Two-dimensional nearest neighbor discriminant analysis
نویسندگان
چکیده
Recently, some feature extraction methods have been developed by representing images with matrix directly, however few of them are proposed to improve accuracy of classification directly. In this paper, a novel feature extraction method, twodimensional nearest neighbor discriminant analysis(2DNNDA), is proposed from the view of the nearest neighbor classification, which makes use of the matrix representation of images. We apply 2DNNDA to face recognition and the results demonstrate that 2DNNDA outperforms the conventional methods.
منابع مشابه
Nearest Neighbor Discriminant Analysis
Linear Discriminant Analysis (LDA) is a popular feature extraction technique in statistical pattern recognition. However, it often suffers from the small sample size problem when dealing with high dimensional data. Moreover, while LDA is guaranteed to find the best directions when each class has a Gaussian density with a common covariance matrix, it can fail if the class densities are more gene...
متن کاملStepwise Nearest Neighbor Discriminant Analysis
Linear Discriminant Analysis (LDA) is a popular feature extraction technique in statistical pattern recognition. However, it often suffers from the small sample size problem when dealing with the high dimensional data. Moreover, while LDA is guaranteed to find the best directions when each class has a Gaussian density with a common covariance matrix, it can fail if the class densities are more ...
متن کاملEFFECT OF THE NEXT-NEAREST NEIGHBOR INTERACTION ON THE ORDER-DISORDER PHASE TRANSITION
In this work, one and two-dimensional lattices are studied theoretically by a statistical mechanical approach. The nearest and next-nearest neighbor interactions are both taken into account, and the approximate thermodynamic properties of the lattices are calculated. The results of our calculations show that: (1) even though the next-nearest neighbor interaction may have an insignificant ef...
متن کاملBoosting Discriminant Learners for Gait Recognition Using MPCA Features
This paper proposes a boosted linear discriminant analysis (LDA) solution on features extracted by the multilinear principal component analysis (MPCA) to enhance gait recognition performance. Three dimensional gait objects are projected in the MPCA space first to obtain low-dimensional tensorial features. Then, lower-dimensional vectorial features are obtained through discriminative feature sel...
متن کاملSpherical Classification of Remote Sensing Data
Real data are often characterized by high dimensional feature vectors. However, such data contain redundant information that may not be beneficial for analysis algorithms. As such, feature transformation arises in related fields of study, including geoscientific applications, as a means to capture the few characteristics that are useful for pattern analysis algorithms. In this study, we investi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neurocomputing
دوره 70 شماره
صفحات -
تاریخ انتشار 2007